DOLOMITE – 2

Dolomit termasuk rumpun mineral karbonat, mineral dolomit murni secara teoritis mengandung 45,6% MgCO3 atau 21,9% MgO dan 54,3% CaCO3 atau 30,4% CaO. Rumus kimia mineral dolomit dapat ditulis meliputi CaCO3.MgCO3, CaMg(CO3)2 atau CaxMg1-xCO3, dengan nilai x lebih kecil dari satu. Dolomit di alam jarang yang murni, karena umumnya mineral ini selalu terdapat bersama-sama dengan batu gamping, kwarsa, rijang, pirit dan lempung. Dalam mineral dolomit terdapat juga pengotor, terutama ion besi.

Dolomit berwarna putih keabu-abuan atau kebiru-biruan dengan kekerasan lebih lunak dari batugamping, yaitu berkisar antara 3,50 – 4,00, bersifat pejal, berat jenis antara 2,80 – 2,90, berbutir halus hingga kasar dan mempunyai sifat mudah menyerap air serta mudah dihancurkan. Klasifikasi dolomit dalam perdagangan mineral industri didasarkan atas kandungan unsur magnesium, Mg (kimia), mineral dolomit (mineralogi) dan unsur kalsium (Ca) dan magnesium (Mg). Kandungan unsur magnesium ini menentukan nama dolomit tersebut. Misalnya, batugamping mengandung ± 10 % MgCO3 disebut batugamping dolomitan, sedangkan bila mengandung 19 % MgCO3 disebut dolomit

Penggunaan dolomit dalam industri tidak seluas penggunaan batugamping dan magnesit. Kadang-kadang penggunaan dolomit ini sejalan atau sama dengan penggunaan batugamping atau magnesit untuk suatu industri tertentu. Akan tetapi, biasanya dolomit lebih disukai karena banyak terdapat di alam.

Madiapoera, T (1990) menyatakan bahwa penyebaran dolomit yang cukup besar terdapat di Propinsi Sumatera Utara, Sumatera Barat, Jawa Tengah, Jawa Timur dan Madura dan Papua. Di beberapa daerah sebenarnya terdapat juga potensi dolomit, namun jumlahnya relatif jauh lebih kecil dan hanya berupa lensa-lensa pada endapan batugamping.

– Propinsi Nangroe Aceh Darussalam; Aceh Tenggara, desa Kungki berupa marmer dolomit. Cadangan masih berupa sumberdaya dengan kandungan MgO = 19%.

– Propinsi Sumatera Utara; Tapanuli Selatan, desa Pangoloan, berupa lensa dalam batugamping. Cadangan berupa sumberdaya dengan kandungan MgO = 11 – 18%.

– Propinsi Sumatera Barat; Daerah Gunung Kajai. (antara Bukittinggi – Payakumbuh). Umur diperkirakan Permokarbon.

– Propinsi Jawa Barat; daerah Cibinong, yaitu di Pasir Gedogan. Dolomit di daerah ini umumnya berwarna putih abu-abu dan putih serta termasuk batugamping dolomitan yang bersifat keras, kompak dan kristalin.

– Propinsi Jawa Tengah; 10 km timur laut Pamotan. Endapan batuan dolomit dan batugamping dolomitan.

Propinsi Jawa Timur;
· Gn. Ngaten dan Gn. Ngembang, Tuban, formasi batu-gamping Pliosen. MgO = 18,5% sebesar 9 juta m3, kandungan MgO = 14,5% sebesar 3 juta m3;
· Tamperan, Pacitan. Cadangan berupa sumberdaya dengan cadangan sebesar puluhan juta ton. Kandungan MgO = 18%;
· Sekapuk, sebelah Utara Kampung Sekapuk (Sedayu – Tuban). Terdapat di Bukit Sekapuk, Kaklak dan Malang, formasi gamping umur Pliosen, ketebalan 50 m, bersifat lunak dan berwarna putih. Cadangan sekitar 50 juta m3; Kandungan MgO di Sekapuk (7,1 – 20,54%); di Sedayu (9,95- 21,20 %); dan di Kaklak (9,5 – 20,8%);
· Gunung Lengis, Gresik. Cadangan sumberdaya, dengan kandungan MgO = 11,1- 20,9 %, merupakan batuan dolomit yang bersifat keras, pejal, kompak dan kristalin;
· Socah, Bangkalan, Madura; satu km sebelah Timur Socah. Cadangan 430 juta ton dan sumberdaya. Termasuk Formasi Kalibeng berumur Pliosen, warna putih, agak lunak, sarang. Ada di bawah batugamping dengan kandungan MgO 9,32 -20,92%.
· Pacitan, Sentul dan Pancen; batugamping dolomitan 45,5 – 90,4%, berumur Pliosen. Di Bukit Kaklak, Gresik endapan dolomit terdapat dalam formasi batu-gamping Pliosen, tebal + 35 m dan jcadangan sekitar 70 juta m3.

– Propinsi Sulawesi Selatan; di Tonassa, dolomit berumur Miosen dan merupakan lensa-lensa dalam batugamping.

– Propinsi Papua; di Abe Pantai, sekitar Gunung Sejahiro, Gunung Mer dan Tanah Hitam; kandungan MgO sebesar 10,7-21,8%, dan merupakan lensa-lensa dan kantong-kantong dalam batugamping.

STATISTIK 2003 – 1997

2003 2002 2001 2000 1999 1998 1997
Production, tons 1,618,837.83 1,541,845.38 1,460,000.00 600,000.00 440,000.00 190,000.00 180,000.00
Consumption, tons 1,615,410.00 1,538,209.24 1,479,166.53 593,955.17 436,411.88 190,104.65 182,737.07
Export, tons 141.95 105.41 1,436.00 2,104.32 181.98 0.50
Import, tons 4,307.64 3,842.85 3,336.30 3,742.37 4,411.97 129.72 1,170.67

Source: Central Bureau of Statistics

Note: click on number for more detail info

Potensi

Iklan

Batubara

Latar Belakang

Batubara merupakan salah satu sumber energi primer yang memiliki riwayat pemanfaatan yang sangat panjang. Beberapa ahli sejarah yakin bahwa batubara pertama kali digunakan secara komersial di Cina. Ada laporan yang menyatakan bahwa suatu tambang di timur laut Cina menyediakan batu bara untuk mencairkan tembaga dan untuk mencetak uang logam sekitar tahun 1000 SM. Bahkan petunjuk paling awal tentang batubara ternyata berasal dari filsuf dan ilmuwan Yunani yaitu Aristoteles, yang menyebutkan adanya arang seperti batu. Abu batu bara yang ditemukan di reruntuhan bangunan bangsa Romawi di Inggris juga menunjukkan bahwa batubara telah digunakan oleh bangsa Romawi pada tahun 400 SM. Catatan sejarah dari Abad Pertengahan memberikan bukti pertama penambangan batu bara di Eropa, bahkan suatu perdagangan internasional batu bara laut dari lapisan batu bara yang tersingkap di pantai Inggris dikumpulkan dan diekspor ke Belgia. Selama Revolusi Industri pada abad 18 dan 19, kebutuhan akan batubara amat mendesak. Penemuan revolusional mesin uap oleh James Watt, yang dipatenkan pada tahun 1769, sangat berperan dalam pertumbuhan penggunaan batu bara. Oleh karena itu, riwayat penambangan dan penggunaan batu bara tidak dapat dilepaskan dari sejarah Revolusi Industri, terutama terkait dengan produksi besi dan baja, transportasi kereta api dan kapal uap.

Namun tingkat penggunaan batubara sebagai sumber energi primer mulai berkurang seiring dengan semakin meningkatnya pemakaian minyak. Dan akhirnya, sejak tahun 1960 minyak menempati posisi paling atas sebagai sumber energi primer menggantikan batubara. Meskipun demikian, bukan berarti bahwa batubara akhirnya tidak berperan sama sekali sebagai salah satu sumber energi primer. Krisis minyak pada tahun 1973 menyadarkan banyak pihak bahwa ketergantungan yang berlebihan pada salah satu sumber energi primer, dalam hal ini minyak, akan menyulitkan upaya pemenuhan pasokan energi yang kontinyu. Selain itu, labilnya kondisi keamanan di Timur Tengah yang merupakan produsen minyak terbesar juga sangat berpengaruh pada fluktuasi harga maupun stabilitas pasokan. Keadaan inilah yang kemudian mengembalikan pamor batubara sebagai alternatif sumber energi primer, disamping faktor – faktor berikut ini:

  1. Cadangan batubara sangat banyak dan tersebar luas. Diperkirakan terdapat lebih dari 984 milyar ton cadangan batubara terbukti (proven coal reserves) di seluruh dunia yang tersebar di lebih dari 70 negara. Dengan asumsi tingkat produksi pada tahun 2004 yaitu sekitar 4.63 milyar ton per tahun untuk produksi batubara keras (hard coal) dan 879 juta ton per tahun untuk batubara muda (brown coal), maka cadangan batubara diperkirakan dapat bertahan hingga 164 tahun. Sebaliknya, dengan tingkat produksi pada saat ini, minyak diperkirakan akan habis dalam waktu 41 tahun, sedangkan gas adalah 67 tahun. Disamping itu, sebaran cadangannya pun terbatas, dimana 68% cadangan minyak dan 67% cadangan gas dunia terkonsentrasi di Timur Tengah dan Rusia.
  2. Negara – negara maju dan negara – negara berkembang terkemuka memiliki banyak cadangan batubara. Berdasarkan data dari BP Statistical Review of Energy 2004, pada tahun 2003, 8 besar negara – negara dengan cadangan batubara terbanyak adalah Amerika Serikat, Rusia, China, India, Australia, Jerman, Afrika Selatan, dan Ukraina.
  3. Batubara dapat diperoleh dari banyak sumber di pasar dunia dengan pasokan yang stabil.
  4. Harga batubara yang murah dibandingkan dengan minyak dan gas.
  5. Batubara aman untuk ditransportasikan dan disimpan.
  6. Batubara dapat ditumpuk di sekitar tambang, pembangkit listrik, atau lokasi sementara.
  7. Teknologi pembangkit listrik tenaga uap batubara sudah teruji dan handal.
  8. Kualitas batubara tidak banyak terpengaruh oleh cuaca maupun hujan.
  9. Pengaruh pemanfaatan batubara terhadap perubahan lingkungan sudah dipahami dan dipelajari secara luas, sehingga teknologi batubara bersih (clean coal technology) dapat dikembangkan dan diaplikasikan.

Melihat pemaparan di atas, dapat dimengerti bahwa peranan batubara dalam penyediaan kebutuhan energi sangatlah penting. Disini penulis tidak akan membahas lebih jauh tentang hal tersebut, tapi akan mengenalkan tentang batubara dan parameter umum yang menjadi penilaian kualitas batubara.

Pembentukan Batubara

Batubara adalah mineral organik yang dapat terbakar, terbentuk dari sisa tumbuhan purba yang mengendap yang selanjutnya berubah bentuk akibat proses fisika dan kimia yang berlangsung selama jutaan tahun. Oleh karena itu, batubara termasuk dalam kategori bahan bakar fosil. Adapun proses yang mengubah tumbuhan menjadi batubara tadi disebut dengan pembatubaraan (coalification).

Faktor tumbuhan purba yang jenisnya berbeda – beda sesuai dengan jaman geologi dan lokasi tempat tumbuh dan berkembangnya, ditambah dengan lokasi pengendapan (sedimentasi) tumbuhan, pengaruh tekanan batuan dan panas bumi serta perubahan geologi yang berlangsung kemudian, akan menyebabkan terbentuknya batubara yang jenisnya bermacam – macam. Oleh karena itu, karakteristik batubara berbeda – beda sesuai dengan lapangan batubara (coal field) dan lapisannya (coal seam)

Gambar 1. Proses Terbentuknya Batubara

(Sumber: Kuri-n ni Riyou Sareru Sekitan, 2004)

Pembentukan batubara dimulai sejak periode pembentukan Karbon (Carboniferous Period) – dikenal sebagai zaman batu bara pertama – yang berlangsung antara 360 juta sampai 290 juta tahun yang lalu. Kualitas dari setiap endapan batu bara ditentukan oleh suhu dan tekanan serta lama waktu pembentukan, yang disebut sebagai ‘maturitas organik’. Proses awalnya, endapan tumbuhan berubah menjadi gambut (peat), yang selanjutnya berubah menjadi batu bara muda (lignite) atau disebut pula batu bara coklat (brown coal). Batubara muda adalah batu bara dengan jenis maturitas organik rendah. Setelah mendapat pengaruh suhu dan tekanan yang terus menerus selama jutaan tahun, maka batu bara muda akan mengalami perubahan yang secara bertahap menambah maturitas organiknya dan mengubah batubara muda menjadi batu bara sub-bituminus (sub-bituminous). Perubahan kimiawi dan fisika terus berlangsung hingga batu bara menjadi lebih keras dan warnanya lebih hitam sehingga membentuk bituminus (bituminous) atau antrasit (anthracite). Dalam kondisi yang tepat, peningkatan maturitas organik yang semakin tinggi terus berlangsung hingga membentuk antrasit.

Dalam proses pembatubaraan, maturitas organik sebenarnya menggambarkan perubahan konsentrasi dari setiap unsur utama pembentuk batubara. Berikut ini ditunjukkan contoh analisis dari masing – masing unsur yang terdapat dalam setiap tahapan pembatubaraan.

Tabel 1. Contoh Analisis Batubara (daf based)

(Sumber: Sekitan no Kiso Chishiki)


Data – data di atas apabila ditampilkan dalam bentuk grafik hasilnya adalah sebagai berikut:

Gambar 2. Hubungan Tingkat Pembatubaraan – Kadar Unsur Utama

Dari tabel di atas dapat diketahui bahwa semakin tinggi tingkat pembatubaraan, maka kadar karbon akan meningkat, sedangkan hidrogen dan oksigen akan berkurang. Karena tingkat pembatubaraan secara umum dapat diasosiasikan dengan mutu atau kualitas batubara, maka batubara dengan tingkat pembatubaraan rendah – disebut pula batubara bermutu rendah – seperti lignite dan sub-bituminus biasanya lebih lembut dengan materi yang rapuh dan berwarna suram seperti tanah, memiliki tingkat kelembaban (moisture) yang tinggi dan kadar karbon yang rendah, sehingga kandungan energinya juga rendah. Semakin tinggi mutu batubara, umumnya akan semakin keras dan kompak, serta warnanya akan semakin hitam mengkilat. Selain itu, kelembabannya pun akan berkurang sedangkan kadar karbonnya akan meningkat, sehingga kandungan energinya juga semakin besar.

Pemanfaatan Batubara

Klasifikasi batubara berdasarkan tingkat pembatubaraan biasanya menjadi indikator umum untuk menentukan tujuan pengggunaannya. Misalnya, batubara ketel uap atau batubara termal (steam coal) banyak digunakan untuk bahan bakar pembangkit listrik, pembakaran umum seperti pada industri bata atau genteng, dan industri semen, sedangkan batubara metalurgi (metallurgical coal atau coking coal) digunakan untuk keperluan industri besi dan baja serta industri kimia. Kedua jenis batubara tadi termasuk dalam batubara bituminus. Adapun batubara antrasit digunakan untuk proses sintering bijih mineral, proses pembuatan elektroda listrik, pembakaran batu gamping, dan untuk pembuatan briket tanpa asap.

Gambar 3. Jenis – jenis Batubara dan Pemanfaatannya

(Sumber: The Coal Resource, 2004)

Kualitas Batubara

Dalam pemanfaatannya, batubara harus diketahui terlebih dulu kualitasnya. Hal ini dimaksudkan agar spesifikasi mesin atau peralatan yang memanfaatkan batubara sebagai bahan bakarnya sesuai dengan mutu batubara yang akan digunakan, sehingga mesin – mesin tersebut dapat berfungsi optimal dan tahan lama. Secara umum, parameter kualitas batubara yang lazim digunakan adalah kalori, kadar kelembaban, kandungan zat terbang, kadar abu, kadar karbon, kadar sulfur, ukuran, dan tingkat ketergerusan, disamping parameter lain seperti analisis unsur yang terdapat dalam abu (SiO2, Al2O3, P2O5,Fe2O3, dll), analisis komposisi sulfur (pyritic sulfur, sulfate sulfur, organic sulfur), dan titik leleh abu (ash fusion temperature).

Mengambil contoh pembangkit listrik tenaga uap batubara, pengaruh – pengaruh parameter di atas terhadap peralatan pembangkitan listrik adalah sebagai berikut:

1. Kalori (Calorific Value atau CV, satuan cal/gr atau kcal/kg)

CV sangat berpengaruh terhadap pengoperasian pulveriser/mill, pipa batubara dan windbox, serta burner. Semakin tinggi CV maka aliran batubara setiap jam-nya semakin rendah sehingga kecepatan coal feeder harus disesuaikan. Untuk batubara dengan kadar kelembaban dan tingkat ketergerusan yang sama, maka dengan CV yang tinggi menyebabkan pulveriser akan beroperasi di bawah kapasitas normalnya (menurut desain), atau dengan kata lain operating ratio-nya menjadi lebih rendah.

Gambar 4. Pembangkit Listrik Tenaga Uap Batubara

(Sumber: The Coal Resource, 2004)

2. Kadar kelembaban (Moisture, satuan %)

Hasil analisis untuk kelembaban terbagi menjadi free moisture (FM) dan inherent moisture (IM). Adapun jumlah dari keduanya disebut dengan total moisture (TM). Kadar kelembaban mempengaruhi jumlah pemakaian udara primernya. Batubara berkadar kelembaban tinggi akan membutuhkan udara primer lebih banyak untuk mengeringkan batubara tersebut pada suhu yang ditetapkan oleh output pulveriser.

3. Zat terbang (Volatile Matter atau VM, satuan %)

Kandungan VM mempengaruhi kesempurnaan pembakaran dan intensitas api. Penilaian tersebut didasarkan pada perbandingan antara kandungan karbon (fixed carbon) dengan zat terbang, yang disebut dengan rasio bahan bakar (fuel ratio).

Fuel Ratio = Fixed Carbon / Volatile Matter

Semakin tinggi nilai fuel ratio maka jumlah karbon di dalam batubara yang tidak terbakar juga semakin banyak. Kemudian bila perbandingan tersebut nilainya lebih dari 1.2, pengapian akan kurang bagus sehingga mengakibatkan kecepatan pembakaran menurun.

4. Kadar abu (Ash content, satuan %)

Kandungan abu akan terbawa bersama gas pembakaran melalui ruang bakar dan daerah konversi dalam bentuk abu terbang (fly ash) yang jumlahnya mencapai 80% , dan abu dasar sebanyak 20%. Semakin tinggi kadar abu, secara umum akan mempengaruhi tingkat pengotoran (fouling), keausan, dan korosi peralatan yang dilalui.

5. Kadar karbon (Fixed Carbon atau FC, satuan %)

Nilai kadar karbon diperoleh melalui pengurangan angka 100 dengan jumlah kadar air (kelembaban), kadar abu, dan jumlah zat terbang. Nilai ini semakin bertambah seiring dengan tingkat pembatubaraan. Kadar karbon dan jumlah zat terbang digunakan sebagai perhitungan untuk menilai kualitas bahan bakar, yaitu berupa nilai fuel ratio sebagaimana dijelaskan di atas.

6. Kadar sulfur (Sulfur content, satuan %)

Kandungan sulfur dalam batubara terbagi dalam pyritic sulfur, sulfate sulfur, dan organic sulfur. Namun secara umum, penilaian kandungan sulfur dalam batubara dinyatakan dalam Total Sulfur (TS). Kandungan sulfur berpengaruh terhadap tingkat korosi sisi dingin yang terjadi pada elemen pemanas udara, terutama apabila suhu kerja lebih rendah dari pada titik embun sulfur, disamping berpengaruh terhadap efektivitas penangkapan abu pada peralatan electrostatic precipitator.

7. Ukuran (Coal size)

Ukuran butir batubara dibatasi pada rentang butir halus (pulverized coal atau dust coal) dan butir kasar (lump coal). Butir paling halus untuk ukuran maksimum 3mm, sedangkan butir paling kasar sampai dengan ukuran 50mm.

8. Tingkat ketergerusan (Hardgrove Grindability Index atau HGI)

Kinerja pulveriser atau mill dirancang pada nilai HGI tertentu. Untuk HGI lebih rendah, kapasitasnya harus beroperasi lebih rendah dari nilai standarnya pula untuk menghasilkan tingkat kehalusan (fineness) yang sama.

Penutup

Dengan mengetahui apa itu batubara dan peranan pentingnya, diharapkan batubara tidak semata dipandang sebagai komoditas belaka saja, tapi yang lebih penting adalah bahwa batubara merupakan salah satu sumber daya strategis bagi keamanan energi di dalam negeri. Terlebih dengan kenyataan bahwa Indonesia merupakan salah satu negara yang memiliki cadangan batubara yang besar, yaitu sekitar 38.8 milyar ton dimana 70%-nya merupakan batubara muda sedangkan 30% sisanya adalah batubara kualitas tinggi. Potensi ini hendaknya disadari oleh segenap lapisan masyarakat sehingga pengelolaan batubara secara optimal untuk kepentingan bangsa dapat terus dipantau dan diperhatikan bersama – sama.

Referensi:

1. JCOAL, Coal Science Handbook, Japan Coal Energy Center, 2005.

2. JCOAL, Kuri-n ni Riyou Sareru Sekitan, Japan Coal Energy Center, 2004.

3. NEDO, Tankou Gijutsu Ippan Kenshuu You Kyouzai, 2001.

4. Sekitan no Kiso Chishiki, Sekitan Shigen Kaihatsu Kabushiki Kaisha.

5. Sukandarrumidi, Batubara dan Gambut, Gadjah Mada Univ. Press, 1995.

6. WCI, Coal Facts 2005, World Coal Institute, October 2005.

7. WCI, The Coal Resource, World Coal Institute, 2004.

8. WCI, The Role of Coal as an Energy Source, World Coal Institute, 2002.

9. Shigen Enerugi- Chou Sekitan Bu, Ko-ru No-to 1993 Nen Ban, Shigen Sangyou

Shinbunsha, 1993.

Samarinda, 2006.

DOLOMITE – CaMg(CO3)2

Dolomite……..Calcium Magnesium Carbonate……….CaMg(CO3)2

In England, dolomite has become a useful source for the production of magnesite by reacting calcined dolomite with sea-water.

The History Says
Dolomite is named for the French mineralogist Deodat de Dolomieu. They are found all over the world and are quite common in sedimentary rock sequences. These rocks are called appropriately enough dolomite or dolomitic limestone. Disputes have arisen as to how these dolomite beds formed and the debate has been called the “Dolomite Problem”.

The Present Scenario
Dolomite at present time, does not form on the surface of the earth; yet massive layers of dolomite can be found in ancient rocks. That is quite a problem for sedimentologists who see sandstones, shales and limestones formed today almost before their eyes.

DOLOMITE is a double carbonate of calium and magnesium, CaCO3, MgCO3. The mineral was first identified by Count Dolomien in 1791 and named after its discoverer. It is of sedimentary origin and is supposed to have been formed due to chemical action of sea-water containing high percentage of magnesia, on limestone.

Theoretically, dolomite contains:
CaCO3……..54.35%
MgCO3…….45.65%

In other words, it contains:
CaO……..30.4%
MgO ……21.7%
CO2 ….. 47.9%

In nature, considerable variations in the composition of dolomite relating to lime and magnesia percentages are found. When the percentage of CaCO3 increases by 10% or more over the theoretical composition, the mineral is termed ‘calcitic dolomite’, ‘high-calcium dolomite’ or ‘lime-dolomite’. With the decrease in percentage of MgCO3, it is called ‘dolomitic limestone’. With the variations of MgCO3 between 5 to 10%, it is called ‘magnesian limestone’, and upto 5% MgCO3 or less it is taken to be limestone for all purposes in trade and commercial parlance.

Dolomite usually contains impurities, chiefly silica, alumina and iron oxide. For commercial purposes, the percentage of combined impurities should not go beyond 7% above which, it becomes unsuitable for industrial use. It is then used only for road ballasts, building stones, flooring chips etc.

Hardness Associated Minerals Chemical/Typical composition Colour characteristics Luster Field Indicators

3.5-4………… include calcite
sulfide ore minerals
fluorite
barite
quartz

and occasionally with gold white often pink or pinkish and can be colorless, white, yellow, gray or even brown or black when iron is present in the crystal Unlike calcite, effervesces weakly with warm acid or when first powdered with cold HCl pearly to vitreous to dull typical pink color, crystal habit, hardness, slow reaction to acid, density and luster

Industrial Applications

Dolomite is chiefly used as refractory, ramming, and fettling material in steel melting shop, and as fluxing material in blast furnace operation in secondary steel and ferromanganese manufacture. To a lesser extent it is used in the glass industry especially in sheet-glass manufacture. It also finds use in the manufacture of mineral wool.

In England, dolomite has become a useful source for the production of magnesite by reacting calcined dolomite with sea-water. The UK is meeting nearly 50% of her magnesite requirements by this method. Dolomite is also a good source of magnesium metal. The magnesium metal is extracted from dolomite by the well-known fero-silicon process.

Dolomite decomposes completely above 900ºC. The product resulting from this relatively low-temperature calcination is highly porous and reactive and is known as ‘calcinated dolomite’. Dolomite is sometimes used both in the raw and calcined form as refractory material for hearth maintenance and for banking door in open hearth furnaces.

For most refractory uses, it is desirable to subject the dolomite to a heat treatment at a high temperature of the order of 1700ºC, to shrink the material thoroughly and render it less reactive. Dead burnt (D.B.) dolomite is sthe term generally used for the refractory made by firing dolomite, with or without additives, at high temperature to produce dense, well-shrunk particles.

In basic converters the bricks employed are generally of D.B. dolomite and sometimes also of D.B. magnesite. Dolomite bricks are kept in the outer lining because it has lower thermal conductivity than magnesite.

Manufacturing Process
Dead burnt refractory dolomite is produced in rotary kilns. Generally high-grade dolomite, containing combined impurities less than 3%, is selected for dead burning. As it is difficult to densify high purity dolomite in a rotary kiln, it is customary to use some mineralizers to facilitate dead burning. Iron oxide is a common additive. The manufacturing process varies with the grade of D.B. dolomite desired to be produced. In most of the plants in European countries a typical operation, employing rotary kilns lined in the hot zone with basic bricks and fired with powdered coal, is used. The temperature reached in the hot zone is of the order of 1760ºC. The kilns have continuous gas sampling equipment which measures and records the oxygen, combustibles, and carbon dioxide contents of the kiln exit gases for combustion control. The latter is particularly important in achieving a uniform quality of the product, effective use of dead burning agents and efficient use of fuel in the manufacture of dead burnt dolomite.

The dolomite after dead burning is cooled in either rotary or reciprocating recuperative coolers. The air used for cooling gets heated and is again used as secondary air for combustion in the kilns. When D.B. dolomite is manufactured with an additive, it is necessary to use somewhat higher firing temperature in order to shrink the dolomite in a reasonable time-cycle in the kiln. This has been accomplished by improved thermal efficiency in the kiln. Some of the means to attain higher efficiency have been the use of insulating brick-back of the basic lining in the hot zone and the optimum utilization of secondary air from the recuperative coolers, in order to pick up as much of the available heat as is possible from the cooling of the product.

There is another product known as ‘stabilised’ refractory dolomite. It is manufactured by the process similar to that of portland clinker. Dolomite and serpentine with small amounts of suitable stabilising agents, are ground to a slurry in a ball mill. The slurry is fired to a dense mature clinker in a rotaery kiln having a temperature of the order of 1760ºC.

The optimum capacity of vertical or shaft kiln using coke admixed with dolomite for fuel is kept at a minimum of 100 tonnes a day. Such kilns are widely used in the USA and the UK, Scandinavia and other European countries. Great progress has been made in the automation of kilns in the steel-producing countries. D.B. dolomite can stand temperatures upto 2300ºC. It is widely used as a refractory material wherever steel is refined using basic slag. It is used for original hearth installations in the open hearth furnaces as well as for hearth maintenance. These hearths are installed using tar-dolomite ramming mixes and rammed dolomite. Dolomite refractories are also used in electrical furnaces and in cement industry during clinker manufacture.

Specifications
Steel manufacturers prefer dolomite of the following composition for dead burning:
• MgCO3 ————- 35% Min.
• SiO2 ————— 1% Max.
• Fe2O3+Al2O3 ——- 1.5% Max.
• CaCO3 ————– Remainder

Dolomite for use as flux in steel metallurgy should be hard, compact and fine-grained so that it can stand the burden of the batch in the blast furnace as well as the basic steel convertor. It should not be crystalline, i.e., it should not have a saccharoidal texture which gives fritting effect in the furnace. Impurities as low as possible are preferred. It should be free from phosphorous and sulphur. Generally, two grades of dolomite are used, one is called blast furnace (BF) grade and the other steel melting shop (SMS) grade.

The dolomite containing insolubles (Al2O3+Fe2O3+SiO2) upto 7%, is used in the blast furnace by most of the steel manufacturers in the country but the dolomite dontaining a maximum of 4 to 5% insolubles is preferred. Silica and alumina contents in dolomite are not regarded deleterious for blast furnaces. They only cause unnecessary increase in the slag. Dolomite has been found as a useful support to limestone in removing sulphur from the iron ore. It also reduces the viscosity of the slag, thus chemical reactions in the furnace. For the steel melting shop the total insolubles below 4% are preferred. The silica content should be as low as possible, in no case above 2% being tolerated.

The ferro-manganese manufacturers in India usually prefer SMS dolomite for fluxing purposes.

In general, the metallurgical industries require dolomite of the following grades for fluxing purposes.
Blast furnace grade SMS and Ferro-Manganese grades
CaO 28 – 30% Min. CaCO3 MgCO3 95% Max.
MgO 18 – 20% Min. Fe2O3 + Al2O3 2% Max.
Al2O3 + SiO2 + Fe2O3
(total insolubles) 7% Max. SiO2 for SMS
for ferromanganese 2% Max.
3% Max.
For use in the colourless sheet-glass industry, the dolomite should contain not more than 0.1% Fe2O3. Total acid insolubles less than 2% are preferred. A higher content or SiO2 or Al2O3 is not regarded deleterious.